Kruskal’s Algorithm:

Published by

on

Kruskal’s algorithm is a minimum spanning tree algorithm that takes a graph as input and finds the subset of the edges of that graph which

  • form a tree that includes every vertex
  • has the minimum sum of weights among all the trees that can be formed from the graph

How Kruskal’s algorithm works

Kruskal’s algorithm is a type of greedy algorithm that finds the local optimum in the hopes of finding a global optimum.

We start from the edges with the lowest weight and keep adding edges until we reach our goal.

The steps for implementing Kruskal’s algorithm are as follows:

  1. Sort all the edges from low weight to high
  2. Take the edge with the lowest weight and add it to the spanning tree. If adding the edge created a cycle, then reject this edge.
  3. Keep adding edges until we reach all vertices.

Implementation of Kruskal’s Algorithm:

#include <iostream>
 
#define I 32767  // Infinity
#define V 7  // # of vertices in Graph
#define E 9  // # of edges in Graph
 
using namespace std;
 
void PrintMCST(int T[][V-1], int A[][E]){
    cout << "\nMinimum Cost Spanning Tree Edges\n" << endl;
    for (int i {0}; i<V-1; i++){
        cout << "[" << T[0][i] << "]-----[" << T[1][i] << "]" << endl;
    }
    cout << endl;
}
 
// Set operations: Union and Find
void Union(int u, int v, int s[]){
    if (s[u] < s[v]){
        s[u] += s[v];
        s[v] = u;
    } else {
        s[v] += s[u];
        s[u] = v;
    }
}
 
int Find(int u, int s[]){
    int x = u;
    int v = 0;
 
    while (s[x] > 0){
        x = s[x];
    }
 
    while (u != x){
        v = s[u];
        s[u] = x;
        u = v;
    }
    return x;
}
 
void KruskalsMCST(int A[3][9]){
    int T[2][V-1];  // Solution array
    int track[E] {0};  // Track edges that are included in solution
    int set[V+1] = {-1, -1, -1, -1, -1, -1, -1, -1};  // Array for finding cycle
 
    int i {0};
    while (i < V-1){
        int min = I;
        int u {0};
        int v {0};
        int k {0};
 
        // Find a minimum cost edge
        for (int j {0}; j<E; j++){
            if (track[j] == 0 && A[2][j] < min){
                min = A[2][j];
                u = A[0][j];
                v = A[1][j];
                k = j;
            }
        }
 
        // Check if the selected min cost edge (u, v) forming a cycle or not
        if (Find(u, set) != Find(v, set)){
            T[0][i] = u;
            T[1][i] = v;
 
            // Perform union
            Union(Find(u, set), Find(v, set), set);
            i++;
        }
        track[k] = 1;
    }
 
    PrintMCST(T, A);
}
 
int main() {
    int edges[3][9] = {{ 1, 1,  2,  2, 3,  4,  4,  5,  5},
                       { 2, 6,  3,  7, 4,  5,  7,  6,  7},
                       {25, 5, 12, 10, 8, 16, 14, 20, 18}};
 
    KruskalsMCST(edges);
 
    return 0;
}

Leave a comment